11.2 Extending the Definitions to Multiple RVs
Definition 11.27. Joint pmf:

DX, X X, (T1, T2y .y my) = P Xy =21, Xo = 29,..., X, = )] .
Joint cdf
FX1’X2 ..... Xn(l'l,xg, e ,l’n) = P[Xl S xl,XQ S Lo, ... ,Xn S I‘n] .

11.28. Marginal pmf:
= Z ZpX,Y,Z(x7 Y, Z)
Y z

Example 11.29. Consider three random variables X,Y, and Z
whose joint pmf is given by

1/77 (x7y7 ) E {(07170)7(1717 1)}7
_ 2/77 (3:797 ):(07071)7
Pz (8= 3T (a,y,2) = (0,1,1),
0, otherwise.
Then,
px (0)=P[X =0]=
px () =P X =1]=
Therefore,
Y I‘ - 07
px (z) = , T =1,
0, otherwise.

Definition 11.30. Identically distributed random variables:
The following statements are equivalent.

a) Random variables X1, X, ... are identically distributed
b) For every B, P [X; € B| does not depend on j.

(¢) px.(c) = px,(c) for all ¢, i, j.

(d) Fx,(c) = Fx,(c) for all ¢,1, j.
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Definition 11.31. Independence among finite number of ran-
dom variables: The following statements are equivalent.

(a) X, Xo,...,X, are independent

(b) [X1 € B1],[Xs € Bsl,...,[X, € B,] are independent, for all
Bi.B,.....B,

(C) P [Xz € BZ,VZ] = H?:l P [Xz € B,], for all B, Bs,...,B,.
(d) px, x,..x, (1,22, ..., xn) = [[n] px, () for all 1, 29, ..., 2p.

(e) Fx, x,..x,(®1, %2, ..., xn) = [[1g Fx,(x;) for all 1, o, . . ., .
Example 11.32. Toss a coin n times. For the 2th toss, let

Y 1, if H happens on the ith toss,
1 0, if T happens on the ith toss.

We then have a collection of i.i.d. random variables X7, Xo, X3,..., X,,.
11.33. Fact: For i.i.d. X; ~ Bernoulli(p), Y = X;+Xo+---+ X,
is B(n,p).

To see this, consider n (independent) Bernoulli trials (as in

Example [11.32)). Let

Y, — 1, if success happens on the ith trial,
"1 0, if failure happens on the ith trial.

Then, Y is simply counting the number of successes in the n tri-
als. From Definition of Binomial RV, we conclude that Y is
binomial.

Example 11.34. Roll a dice n times. Let N; be the result of the
1th roll. We then have another collection of i.i.d. random variables
N1, No, N3, ..., N,.

Example 11.35. Let X; be the result of tossing a biased coin.
Sethngz---:Xn:Xl.
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11.36. If X;, X5, ..., X, are independent, then so is any subcol-
lection of them.

Definition 11.37. A pairwise independent collection of ran-
dom variables is a collection of random variables any two of which
are independent.

(a) Any collection of (mutually) independent random variables is
pairwise independent

(b) Some pairwise independent collections are not independent.
See Example ((11.38)).

Example 11.38. Let suppose X, Y, and Z have the following

joint probability distribution: pxyz (z,y,2) = i for (z,y,2) €
{(0,0,0),(0,1,1),(1,0,1),(1,1,0)}. This, for example, can be con-
structed by starting with independent X and Y that are Bernoulli-

%. Thenset Z=X®Y =X+4+Y mod 2.
(a) X,Y, Z are pairwise independent.
(b) X,Y, Z are not independent.

11.3 Expectation of Function of Discrete Random Vari-
ables

11.39. Recall that the expected value of “any” function g of a
discrete random variable X can be calculated from

)
53 Again, these are called the law/rule of the a'lazy statistician (LOTUS) [22] Thm 3.6
p 48],[9, p. 149] because it is so much easier to use the above formula than to first find the
pmf of g(X) or g(X,Y). It is also called substitution rule [2I p 271].
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Discrete

P[X € B] > px(z)
zEB
P[(X,Y) € R] >, pxy(z,y)
(z,y):(z,y)ER
Joint to Marginal: px(x) => pxy(z,y)
y
(Law of Total Prob.) | py(y) =>_ pxy(z,y)
PIX>Y] > pxy(z,y)
r y:y<zwz
- Z Z pX,Y(‘Tay)
Yy TT>Y
PIX =Y] > pxy(7,7)
X1Y pxy(7,y) = px(2)py (y)
Conditional pxy (zly) = p);yy—((;)y)
Eg(X,Y)] > g9(z,y)pxy (2, y)
Ty

Table 8: Joint pmf: A Summary

11.40. E [-] is a linear operator: E [aX + bY] = aEX + bEY .

E[3x+5v] = 3EX + 5 EY

(a) Homogeneous: E [cX]| = cEX
(b) Additive: E[X +Y] =EX +EY
(c) Extension: E[> " ¢;ig:(X;)] = > 0 6E [9:(X5)].
IE['bxzi' ¢/ +5 3] = E[;x‘] + IE[Q./‘?] + [E[s2]
=3 E[x*] + ¢IE[/¥]+ SIE[Z]
Example 11.41. Recall from|11.33|that when i.i.d. X; ~ Bernoulli(p),

Y =X;+Xo+ -+ X, is B(n,p). Also, from Example (9.4 we
have EX; = p. Hence,

ZX] Y EX]=Yp=m

1=1

EY =E

Therefore, the expectation of a binomial random variable with
parameters n and p is np.
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Example 11.42. A binary communication link has bit-error prob-
ability p. What is the expected number of bit errors in a trans-
mission of n bits?

Theorem 11.43 (Expectation and Independence). Two random
variables X and Y are independent if and only if Ex. T& XY

E[p(X)g(Y)] = E[h(X)]E[g(Y)] Fhen
— 3.2
for “all” functions h and g. lbI_(X?'- 3)15 inr | = B[ (X~ J
e In other words, X and Y are independent if and only if for X’E[ st Y]
every pair of functions h and g, the expectation of the product
h(X)g(Y) is equal to the product of the individual expecta-
tions.

e One special case is that
X 1Y implies E[XY]=EX x EY. (33)

However, independence means more than this property. In
other words, having E [XY] = (EX)(EY') does not necessarily
imply X I Y. See Example [11.54]

11.44. Let’s combined what we have just learned about indepen-
dence into the definition/equivalent statements that we already

have in [1.21]

The following statements are equivalent:
(a) Random variables X and Y are independent.
(b) [X€B]UL[Y €Cforall B,C. <« evenrt-baed detn.
(c) PIXeB,Ye(C]=P[XeB|xP[Y eC|forall B,C.
(d) pxy(z,y) = px(x) x py(y) for all z,y.
¢) Fxy(z,y) = Fx(x) x Fy(y) for all z,y.
f) E[L (09N = E[hi0 ] E[gln] - el hi) g0

(4) T(X;Y) =0
/

muh’ﬂll
nformation  (EC3152)

(
(
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ve{z] <] (z-wer ] <[] - (B7 gV - (Ele]) q2= =5
E[X‘f] 2EXIEY =1¥1= E[K”f‘] =l]5[x‘]:E[1‘] 3(‘,’4}! : (?éxf) ( 3) = q

Exercise 11.45 (1'2011). Suppose X and ¥V—ure(l)id. with EX =
EY =1 and Var X = VarY = 2. Find Var[¥Y)].
2

11.46. To quantify the amount of dependence between two
random variables, we may’ calculate their mutual information.
This quantity is crucial in the study of digital communications
and information theory. However, in introductory probability class
(and introductory communication class), it is traditionally lomit-
ted.

11.4 Linear Dependence

Definition 11.47. Given two random variables X and Y, we may
calculate the following quantities:

(a) Correlation: E [XY].
(b) Covariance: Cov [ X, Y] =E[(X — EX)(Y — EY)].

(¢) Correlation coeffici

Exercise 11.48 (F2011)/ Continue from Exercise [11.7]

I?.tull, it XLUY, then

(a) Find E [XY]. n_:[],,(_x)e’[w] = E[hx)] E[g(¥)]

(b) Check that Cov /X,Y] = —5.. A seecial of J i
™ ™y, IEIXY] = E[x]IELY]
11.49. Cov[X,Y] YE[(X —EX)(Y — EY)] = E[XY] —EXEY =0 vhen x1LY
Compare Fhis with =[E) XY =X = X k]

Vars %] = JEZEX-EX) ;l = EIXY] - l._E,I -y 3:"35 x>y
=)E) X ] ‘OEX) iy ™.
e Note that Var X = Cov [ X, X].

11.50. Var [X + Y] = Var X + VarY + 2Cov [X, Y]
f z §z==x£?:+l£‘f
=) [E-FEZ-)"] = B[ (X+Y = (EX+EY) )t]
T 2 2
- ]E[ ( (X-1EX) + lY*lEY))i] = }EL[A+6)"]=JEZA +B ZA&]
A B
- IEZA‘] + }E[ B‘] r2 iEIA B:] - IE[LX-FE.X)‘] +IEZLY- fE‘rf']

ST It -Emn-:&w%
If R ond Y ave vrcorvelated , Vav [x+¥] = \/ou[)(] + Va/ Y]
LOV indtmdﬁﬂ"')



Definition 11.51. X and Y are said to be uncorrelated if and
only if Cov [X,Y]=0.

11.52. The following statements are equivalent:
(a) X and Y are uncorrelated.

(b) Cov[X,Y]=0.

(c) E[XY] = EXEY.

(d)

11.53. Independence implies uncorrelatedness; that is if X Il Y,
then Cov [X,Y] = 0.
The converse is not true. Uncorrelatedness does not imply in-
dependence. See Example [11.54]

Example 11.54. Let X be uniform on {£1, £2} an
W\ ] = Z =t =(-\z% N (-}J{l— W+ Dl
=0

%
)/ ” fxld’-J
A
1

-2 1/9 v
Cov %]
- 1/ Y= E|q(*] =IE|IX]] = 2 |x] B,
! K E[)- Elg() = EL1X] g x = EXY]-Ex EvY
IR R T R R g
2. Z 1/‘1 3_.:1'5 =0
¥ I8, “ 9 LS unconrelated

1/;}
/(‘,()f)a{o’ oherwire. ,E{‘f] Zyﬁrl)') (1).1. + (2.)

=32 =15
z

r«'l

"= sy 1 H}l =
Plye1]=dvd=1 E[x] = EEL/)PXT 07) 2CL + L 09 + (9 = 0
plv=2]=1 -4 =1 4
2 7y U1 1) ==
N P(A o B) rffq) Fip14) ) 1 T
- ~N MM 1) = —
oo F22)2P[X= -2 = 2]=P[x=2]P[Y=2]x=-2] P
A LV -, /’Y(1)--1-
2 (0 /4% 2
11.55. The variance of the sum of uncorrelated (or independent)
random variables is the sum of their variances. 73 y,-r“‘”’é 0 o)
@mo‘\’ :-\JP-
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Exercise 11.56. Suppose two fair dice are tossed. Denote by the
random variable V; the number appearing on the first dice and by

the random variable V5 the number appearing on the second dice.
Let X =Vi+Voand Y =V; — V5.

(a) Show that X and Y are not independent.

(b) Show that E[XY] = EXEY.
11.57. Cov [aX + b, cY + d] = acCov [X,Y]

CoviaX +b,cY +d] =E[((aX +b) —E[aX +b]) (Y +d) —E[cY + d])]
=E[((aX +b) — (aEX 4+ 1)) ((¢Y + d) — (cEY + d))]
=E[(aX — aEX) (cY — cEY)]

— acE [(X — EX) (Y — EY)]

= acCov [X,Y].
Definition 11.58. Correlation coefficient: 3
. z,é/shﬁaﬁ“;"tb
Cov [X,Y] o wali *
PXY = sgion ©
’ ox0y ver

o (55 5 -2

px,y is dimensionless

e pxx =1

pxy = 0if and only if X and Y are uncorrelated.

Cauchy-Schwartz Inequality’

lpxy| < 1.

In other words, pxy € [—1,1].

54Cauchy-Schwartz inequality shows up in many areas of Mathematics. A general form of
this inequality can be stated in any inner product space:

[ (a,b) I? < (a,a) (b,).
Here, the inner product is defined by (X,Y) = E [XY]. The Cauchy-Schwartz inequality then

o EXY]|? <E[X?]E[Y?].
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11.59. Linear Dependence and Cauchy-Schwartz Inequality

1, a>0

(a) If'Y = aX +0b, then pxy = sign(a) = { ~1, a<0.

e To be rigorous, we should also require that ox > 0 and

a # 0.

(b) When oy,0x > 0, equality occurs in the Cauchy-Schwartz
inequality if and only if the following conditions holds

Jda # 0 such that (X — EX) =a(Y — EY)
da # 0 and b € R such that X =aY + b
Jec# 0 and d € R such that Y =cX +d

= |pxy|=1

In which case, |a| = z—); and pxy = |g—‘ = sgna. Hence, pxy
is used to quantify linear dependence between X and Y.
The closer |pxy| to 1, the higher degree of linear dependence

between X and Y.

Example 11.60. [21] Section 5.2.3] Consider an important fact
that investment experience supports: spreading investments over
a variety of funds (diversification) diminishes risk. To illustrate,
imagine that the random variable X is the return on every invested
dollar in a local fund, and random variable Y is the return on every
invested dollar in a foreign fund. Assume that random variables X
and Y are i.i.d. with expected value 0.15 and standard deviation
0.12.

If you invest all of your money, say c, in either the local or the
foreign fund, your return R would be cX or cY.

e The expected return is ER = cEX = cEY = 0.15¢c.
e The standard deviation is cox = coy = 0.12¢

Now imagine that your money is equally distributed over the
two funds. Then, the return R is %CX + %CY. The expected return
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is ER = %CEX + %CEY = 0.15c. Hence, the expected return
remains at 15%. However,

c c c? c? 5
Var R = Var [§(X+Y)} = T VarX + 7 Vary = 2 x 0.12%

So, the standard deviation is %c ~ (0.0849c.

In comparison with the distributions of X and Y, the pmf of
$(X +Y) is concentrated more around the expected value. The
centralization of the distribution as random variables are averaged
together is a manifestation of the central limit theorem.

11.61. [21], Section 5.2.3] Example is based on the assump-
tion that return rates X and Y are independent from each other.
In the world of investment, however, risks are more commonly
reduced by combining negatively correlated funds (two funds are
negatively correlated when one tends to go up as the other falls).

This becomes clear when one considers the following hypothet-
ical situation. Suppose that two stock market outcomes w; and wo
are possible, and that each outcome will occur with a probability of
% Assume that domestic and foreign fund returns X and Y are de-
termined by X (w;) = Y (w2) = 0.25 and X (wy) = Y (wy) = —0.10.
Each of the two funds then has an expected return of 7.5%, with
equal probability for actual returns of 25% and -10%. The random
variable Z = 3(X +Y) satisfies Z(w1) = Z(w») = 0.075. In other
words, 7Z is equal to 0.075 with certainty. This means that an in-
vestment that is equally divided between the domestic and foreign
funds has a guaranteed return of 7.5%.
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